[
Yes...and no. They'll physically bolt together and you could drive the car around but there's a catch or two. There's the fact that the original arms on A, G and 1st Gen F body cars were originally designed to droop down over the frame and have the ball joints at the proper angle for a full range of travel. Once you lower the car, go to taller spindles or ball joints etc. the arms end up closer to level and the ball joints end up close to binding at ride height. Hitting a big bump can bind up the ball joints and put a tremendous amount of stress on them as well as the upper A arms and A arm mounting bolts. They'll only take that for so long before something fails...
Much of it also has to do with alignment. A lot of folks think if their car goes straight and doesn't chew up the tires that it's aligned properly and working as well as it can. They're kidding themselves and they're missing out on a LOT of performance. The alignment specs recommended in the `60s and `70s (and even `80s!) were anything but performance oriented. In fact they've changed little since the 1940s. Today almost every car is using power steering and we're all running high performance radial tires (except for the resto guys but that's another story...) these tires are often more than twice the width of the originals, we've also got another 40 years or so of experience to draw on. What's more, once we've corrected the geometry so that it works like a new performance car it demands the same type of alignment those cars run to achieve peak performance.
Modern performance cars run a LOT more + caster and - camber. The + caster helps the cars track better at highway speeds and gives better steering feel. The - camber helps keep the tire's contact patch flat on the road surface during cornering. It's part of what makes new cars drive like new cars. Using these kinds of settings on older cars yields a BIG improvement in drivability and performance but because they were designed around different specs it's usually impossible to attain the best numbers with stock parts and shims. Lowering the car or increasing the effective spindle height with taller spindles or taller ball joints all add more + camber making it ever harder to dial in a - camber setting (which is what we want). That's the big reason for different upper arms. The taller spindles or tall ball joints make the big geometry improvements and the proper upper A arms make it possible to combine the new parts and geometry with the proper performance alignment, an unbeatable combination!
Need technical assistance? Call us.
317-408-4272
WWW.SOUTHSIDEMACHINEPERFORMANCE.COM
QUOTE="buzz77, post: 639707, member: 16915"]Any idea if the stock uppers can take a taller ball joint when lowers also have a .5 taller ball joint? Gotten mixed feedback on this.